ar X iv : n lin / 0 10 50 23 v 1 [ nl in . S I ] 9 M ay 2 00 1 Menelaus ’ theorem , Clifford configurations and inversive geometry of the Schwarzian KP hierarchy

نویسندگان

  • B. G. Konopelchenko
  • W. K. Schief
چکیده

It is shown that the integrable discrete Schwarzian KP (dSKP) equation which constitutes an algebraic superposition formula associated with, for instance, the Schwarzian KP hierarchy, the classical Darboux transformation and quasi-conformal mappings encapsulates nothing but a fundamental theorem of ancient Greek geometry. Thus, it is demonstrated that the connection with Menelaus' theorem and, more generally, Clifford configurations renders the dSKP equation a natural object of inversive geometry on the plane. The geometric and algebraic integrability of dSKP lattices and their reductions to lattices of Menelaus-Darboux, Schwarzian KdV, Schwarzian Boussinesq and Schramm type is discussed. The dSKP and discrete Schwarzian Boussinesq equations are shown to represent dis-cretizations of families of quasi-conformal mappings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : n lin / 0 10 50 23 v 2 [ nl in . S I ] 2 J ul 2 00 1 Menelaus ’ theorem , Clifford configurations and inversive geometry of the Schwarzian KP hierarchy

It is shown that the integrable discrete Schwarzian KP (dSKP) equation which constitutes an algebraic superposition formula associated with, for instance, the Schwarzian KP hierarchy, the classical Darboux transformation and quasi-conformal mappings encapsulates nothing but a fundamental theorem of ancient Greek geometry. Thus, it is demonstrated that the connection with Menelaus' theorem and, ...

متن کامل

ar X iv : n lin / 0 10 70 01 v 2 [ nl in . S I ] 5 J ul 2 00 1 Reciprocal figures , graphical statics and inversive geometry of the Schwarzian BKP hierarchy

A remarkable connection between soliton theory and an important and beautiful branch of the theory of graphical statics developed by Maxwell and his contemporaries is revealed. Thus, it is demonstrated that reciprocal triangles which constitute the simplest pair of reciprocal figures representing both a framework and a self-stress encapsulate the integrable discrete BKP equation and its Schwarz...

متن کامل

ar X iv : 0 90 7 . 20 23 v 1 [ m at h - ph ] 1 2 Ju l 2 00 9 Menelaus relation and Fay ’ s trisecant formula are associativity equations

It is shown that the celebrated Menelaus relation and Fay's trisecant formula similar to the WDVV equation are associativity conditions for structure constants of certain three-dimensional algebra.

متن کامل

ar X iv : s ol v - in t / 9 90 50 05 v 2 1 7 M ay 1 99 9 The KP Hierarchy in Miwa coordinates ∗

A systematic reformulation of the KP hierarchy by using continuous Miwa variables is presented. Basic quantities and relations are defined and determinantal expressions for Fay’s identities are obtained. It is shown that in terms of these variables the KP hierarchy gives rise to a Darboux system describing an infinite-dimensional conjugate net.

متن کامل

ar X iv : m at h - ph / 0 60 50 74 v 1 2 9 M ay 2 00 6 BRYANT - SALAMON ’ S G 2 - MANIFOLDS AND THE HYPERSURFACE GEOMETRY

We show that two of Bryant-Salamon’s G2-manifolds have a simple topology, S \ S or S \ CP . In this connection, we show there exists a complete Ricci-flat (non-flat) metric on Sn \ Sm for some n − 1 > m. We also give many examples of special Lagrangian submanifolds of T ∗Sn with the Stenzel metric. The hypersurface geometry is essential in the argument.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002